Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater.
نویسندگان
چکیده
The glycosyltransferase SnogD from Streptomyces nogalater transfers a nogalamine moiety to the metabolic intermediate 3',4'-demethoxynogalose-1-hydroxynogalamycinone during the final steps of biosynthesis of the aromatic polyketide nogalamycin. The crystal structure of recombinant SnogD, as an apo-enzyme and with a bound nucleotide, 2-deoxyuridine-5'-diphosphate, was determined to 2.6 Å resolution. Reductive methylation of SnogD was crucial for reproducible preparation of diffraction quality crystals due to creation of an additional intermolecular salt bridge between methylated lysine residue Lys384 and Glu374* from an adjacent molecule in the crystal lattice. SnogD is a dimer both in solution and in the crystal, and the enzyme subunit displays a fold characteristic of the GT-B family of glycosyltransferases. Binding of the nucleotide is associated with rearrangement of two active-site loops. Site-directed mutagenesis shows that two active-site histidine residues, His25 and His301, are critical for the glycosyltransferase activities of SnogD both in vivo and in vitro. The crystal structures and the functional data are consistent with a role for His301 in binding of the diphosphate group of the sugar donor substrate, and a function of His25 as a catalytic base in the glycosyl transfer reaction.
منابع مشابه
Identification of a cyclase gene dictating the C-9 stereochemistry of anthracyclines from Streptomyces nogalater.
Nogalamycin is an anthracycline antibiotic produced by Streptomyces nogalater. Its aglycone has a unique stereochemistry (7S, 9S, 10R) compared to that of most other anthracyclines (7S, 9R, 10R). The gene snoaL, encoding a nogalonic acid methyl ester cyclase for nogalamycin, was used to generate nogalamycinone, demonstrating that the single cyclase dictates the C-9 stereochemistry of anthracycl...
متن کاملTwo heterologously expressed Planobispora rosea proteins cooperatively induce Streptomyces lividans thiostrepton uptake and storage from the extracellular medium
BACKGROUND A bacterial artificial chromosomal library of Planobispora rosea, a genetically intractable actinomycete strain, was constructed using Escherichia coli-Streptomyces artificial chromosome (ESAC) and screened for the presence of genes known to be involved in the biosynthesis of antibiotics. RESULTS One clone with a 40 kb insert showed antimicrobial activity against Gram positive bact...
متن کاملThe tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region.
The genetic organization of the left edge (tyIEDHFJ region) of the tylosin biosynthetic gene cluster from Streptomyces fradiae has been determined. Sequence analysis of a 12.9 kb region has revealed the presence of 11 ORFs, 10 of them belonging to the biosynthetic cluster. The putative functions of the proteins encoded by these genes are as follows: peptidase (ORF1, ddcA), tylosin resistance de...
متن کاملStructure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation.
SnoaL belongs to a family of small polyketide cyclases, which catalyse ring closure steps in the biosynthesis of polyketide antibiotics produced in Streptomyces. Several of these antibiotics are among the most used anti-cancer drugs currently in use. The crystal structure of SnoaL, involved in nogalamycin biosynthesis, with a bound product, has been determined to 1.35 A resolution. The fold of ...
متن کاملجداسازی و تأیید مولکولی سریع استرپتومایسس های تولید کننده آنتی بیوتیک استرپتومایسین
Introduction: Streptomyces species are mycelial, aerobic gram-positive bacteria that are isolated from soil and produce a diverse range of antibiotics. Streptomyces griseus produces the antibiotic, streptomycin and forms spores even in a liquid culture. The gene cluster for the production of Streptomycin antibiotic contains strR gene that encodes StrR, a pathway-specific regulator. Then, this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The FEBS journal
دوره 279 17 شماره
صفحات -
تاریخ انتشار 2012